Гидрокрекинг в стационарном слое

Назначение процесса, катализаторы, состав установки

Процесс гидрокрекинга предназначен в основном для получения малосернистых топливных дистиллятов из различного сырья. Обычно гидрокрекингу подвергают вакуумные и атмосферные газойли, газойли термического и каталитического крекинга, деасфальтизаты и реже мазуты и гудроны с целью производства автомобильных бензинов, реактивных и дизельных топлив, сырья для нефтехимического синтеза, а иногда и сжиженных углеводородных газов (из бензиновых фракпий). Водорода при гидрокрекинге расходуется значительно больше, чем при гидроочистке тех же видов сырья.

Гидрокрекинг осуществляется в одну или две ступени на неподвижном (стационарном) слое катализатора при высоком парциальном давлении водорода. По технологическому оформлению модификации процесса различаются преимущественно применяемыми катализаторами. При производстве топливных дистиллятов из прямогонного сырья обычно используют одноступенчатый вариант с рециркуляцией остатка, совмещая в реакционной системе гидроочистку, гидрирование и гидрокрекинг. При двухступенчатом процессе гидроочистку и гидрирование сырья проводят в первой ступени, а гидрокрекинг во второй. В этом случае достигается более высокая глубина превращения тяжелого сырья.

Для гидрокрекинга наибольшее распространение получили алюмокобальтмолибденовые катализаторы, а также на первой ступени — оксиды или сульфиды никеля, кобальта, вольфрама и на второй ступени — цеолитсодержащие катализаторы с платиной.

Процесс гидрокрекинга — экзотермический, и для выравнивания температуры сырьевой смеси по высоте реактора предусмотрен ввод холодного водородсодержащего газа в зоны между слоями катализатора. Движение сырьевой смеси в реакторах нисходящее.

Технологические установки гидрокрекинга состоят обычно из двух основных блоков: реакционного, включающего один или два реактора, и блока фракционирования, имеющего разное число дистилляционных колонн (стабилизации, фракционирования жидких продуктов, вакуумную колонну, фракционирующий абсорбер и др.). Кроме того, часто имеется блок очистки газов от сероводорода. Мощность установок может достигать 13 000 м3/сут.

Технологическая схема

Fig31

Технологическая схема одноступенчатого гидрокрекинга с получением преимущественно дизельного топлива из вакуумного газойля в стационарном слое катализатора.

Сырье, подаваемое насосом 1, смешивается со свежим водородсодержащим газом и циркуляционным газом, которые нагнетаются компрессором 8. Газосырьевая смесь, пройдя теплообменник 4 и змеевики печи 2, нагревается до температуры реакции и вводится в реактор 3 сверху. Учитывая большое тепловыделение в процессе гидрокрекинга, в реактор в зоны между слоями катализатора вводят холодный водородсодержащий (циркуляционный) газ с целью выравнивания температур по высоте реактора.

Выходящая из реактора смесь продуктов реакции и циркуляционного газа охлаждается в теплообменнике 4, холодильнике 5 и поступает в сепаратор высокого давления 6. Здесь водородсодержащий газ отделяется от жидкости, которая с низа сепаратора через редукционный клапан 9, поступает далее в сепаратор низкого давления 10. В сепараторе 10 выделяется часть углеводородных газов, а жидкий поток направляется в теплообменник 11, расположенный перед промежуточной ректификационной колонной 15. В колонне при небольшом избыточном давлении выделяются углеводородные газы и легкий бензин.

Бензин частично возвращается в колонну 15 в виде острого орошения, а балансовое его количество через систему «защелачивания» откачивается с установки. Остаток колонны 15 разделяется в атмосферной колонне 20 на тяжелый бензин, дизельное топливо и фракцию >360°С.

Бензин атмосферной колонны смешивается с бензином промежуточной колонны и выводится с установки. Дизельное топливо после отпарной колонны 24 охлаждается, «защелачивается» и откачивается с установки. Фракция >360°С используется в виде горячего потока внизу колонны 20, а остальная часть (остаток) выводится с установки. В случае производства масляных фракций блок фракционирования имеет также вакуумную колонну.

Водородсодержащий газ подвергается очистке водным раствором моноэтаноламина и возвращается в систему. Необходимая концентрация водорода в циркуляционном газе обеспечивается подачей свежего водорода (например, с установки каталитического риформинга).

Регенерация катализатора проводится смесью воздуха и инертного газа, срок службы катализатора 4—7 мес.

Технологический режим

Показатели Значения показателей
Температура, °С
    I ступени 420 - 430
    II ступени 450 - 480
Давление, МПа 15 - 20
Объёмная скорость подачи сырья, ч-1 до 1,5
Кратность циркуляции ВСГ, нм33 сырья до 2000
Расход водорода, % (масс.) на сырье 1,2 - 4,0

Материальный баланс

Материальный баланс одноступенчатого процесса гидрокрекинга сернистого и высокосернистого сырья (при следующих условиях: общее давление 5 МПа, температура 425°С, объемная скорость подачи сырья 1,0 ч-1, кратность циркуляции водородсодержащего газа 600 нм33 сырья).

Показатели Вакуумный дистиллят сернистых нефтей (350-500°С) Вакуумный дистиллят арланской нефти Дистиллят кокосования гудрона сернистых нефтей (200-350°С)
Фракция 200-450°С Фракция 350-450°С
Взято, % (масс.)
    сырьё 100,0 100,0 100,0 100,0
    водород 100-%ный 0,9 0,9 0,9 0,9
Итого 100,9 100,9 100,9 100,9
Получено, % (масс.)
    бензин (НК-180°С) 2,8 4,3 3,2 5,6
    дизельное топливо (180-360°С) 43,3 73,3 49,2 70,7
    остаток >360°С 49,0 17,0 41,4 18,7
    сероводород 2,1 2,3 3,4 2,0
    аммиак 0,2 0,2 0,2 0,16
    углеводородные газы 2,5 2,8 2,6 3,24
    потери 1,0 1,0 1,0 1,0
Итого 100,9 100,9 100,9 100,9

Свойства продуктов в зависимости от сырья

Показатели Вакуумный дистиллят сернистых нефтей (350-500°С) Вакуумный дистиллят арланской нефти Дистиллят кокосования гудрона сернистых нефтей (200-350°С)
Фракция 200-450°С Фракция 350-450°С
бензин дизельное топливо бензин дизельное топливо бензин дизельное топливо бензин дизельное топливо
Плотность при 20°С, кг/м3 783 861 777 841 781 861 769 861
Фракционный состав, °С:
    НК 119 180 85 193 89 173 92 181
    КК (98%) 181 354 186 355 181 355 184 350
Иодное число, г I/100 г: 3,6 5,1 4,4 5,2 4,3 4,2 7,3 4,6
Температура застывания, °С: - - 10 - - 10 - - 12 - - 10
Содержание:
    серы, % (масс.) 0,02 0,12 0,02 0,17 0,02 0,05 0,02 0,09
    фактических смол, мг/100 мл <5 - <5 - <5 - - -
Вязкость кинематическая, мм2 - 5,6 - 5,9 - 4,8 - -
Октановое (ММ) или цетановое число 50 46 61,5 49 54 49 55 45

Тяжелый газойль гидрокрекинга рассматривается как хорошее пиролизное сырье для получения этилена, а фракции С5—85°С и 85—193°С, богатые нафтеновыми углеводородами, — как превосходное сырье для каталитического риформинга, направленного на производство ароматических углеводородов. Легкий газойль обычно используется как компонент дизельного топлива.


ГИДРОГЕНИЗАЦИОННЫЕ ПРОЦЕССЫ