Гидрокрекинг с псевдоожиженным слоем

Назначение процесса, выходы продуктов

Процесс гидрокрекинга с трехфазным псевдоожиженным слоем катализатора предназначен для переработки нефтяных остатков с высоким содержанием смол, сернистых и металлорганических соединений с целью получения малосернистых нефтепродуктов: бензина, реактивного, дизельного и котельного топлив. Сырьем могут служить мазут, гудрон, тяжелые вакуумные газойли, газойли коксования, крекинг-остатки, высоковязкие нефти из битуминозных пород и др.

Выходы продуктов гидрокрекинга меняются в широких пределах в зависимости от качества перерабатываемого сырья и глубины процесса. Одно и то же количество катализатора дает при работе в режиме псевдоожижения глубину разложения в среднем на 20—30% большую, чем в стационарном режиме, при близком качестве получаемых продуктов. При одинаковой глубине разложения сырья производительность псевдоожиженного слоя в три раза выше производительности стационарного. Гидрокрекинг дистиллятного сырья позволяет получать более качественные продукты, чем аналогичная переработка остаточного сырья.

Практика нефтепереработки показывает экономическую целесообразность предварительного облагораживания сырья, поступающего на гидрокрекинг: деасфальтизации, термоконтактного крекинга, деструктивно- вакуумной перегонки и т. п.

Технологическая схема

Fig32

Промышленная установка гидрокрекинга включает нагревательно-реакционную секцию (печи, реакторы), системы очистки и циркуляции водородсодержащего газа (газосепаратор высокого давления, колонны осушки и очистки, водородный компрессор) и блок газо- и погоноразделения (сепаратор низкого давления, колонны ректификации гидрогенизата).

Сырье установки смешивается с циркуляционным и свежим водородсодержащим газом, и газосырьевая смесь нагревается последовательно в теплообменнике 6 и змеевиках нагревательной печи 5. Нагретая смесь поступает в низ реакторов 2 и 3 через распределительные решетки, обеспечивающие равномерное распределение жидкости и газа в поперечном сечении реактора. Для создания псевдоожиженного слоя в низ реакторов вводят рециркулят.

Парожидкостная смесь после реактора II ступени 3 охлаждается в теплообменнике 6 и конденсаторе-холодильнике 7 и подается в сепаратор высокого давления 8. Отделившийся от жидкой фазы водородсодержащий газ проходит очистку от сероводорода в абсорбере 11, осушку и смешивается с сырьем. Для восполнения водорода, израсходованного на реакции гидрирования, в систему постоянно вводится свежий водородсодержащий газ.

Давление жидкого гидрогенизата, поступающего через редукционный клапан 10 в сепаратор низкого давления 13, снижается до атмосферного. После отделения в сепараторе 13 газообразных углеводородов и частично сероводорода катализат, подогретый в змеевиках нагревательной печи 15, направляется на ректификацию во фракционирующую колонну 17.

Топливный газ отводится из сепаратора 19 сверху. С низа отпарных колонн 20 и 21 отбираются соответственно тяжелый бензин и средние дистиллятные фракции. Вакуумная колонна 22 позволяет получить тяжелый газойль и смолистый остаток.

Технологический режим

Показатели Значения показателей
Температура, °С 400 - 450
Давление в реакционной зоне, МПа 15 - 20
Объёмная скорость подачи сырья, ч-1 1 - 3
Кратность циркуляции ВСГ, нм33 сырья 1000 - 1200
Расход катализатора, кг/м3 сырья 0,08 - 0,57

Катализаторы

В качестве катализаторов используют два типа катализаторов — микросферический и в виде гранул размером 8 мм. При переработке остаточного сырья — это алюмокобальтмолибденовый катализатор [удельная поверхность 400 м2/г, удельный объем пор 0,75 см3/г, 15% (масс.) Мо03 и 3,5% (масс.) СоО], а при переработке дистиллятного — алюмоникельвольфрамовый [удельная поверхность 175 м2/г, удельный объем пор 0,33 см3/г, 6% (масс.) Ni и 19% (масс.) W ].

Процесс получения «синтетической» нефти

Процесс гидрокрекинга в псевдоожиженном слое получил широкое распространение для получения «синтетической» нефти из высоковязких нефтей, выделенных из битуминозных песков. При переработке такой нефти на алюмокобальтмолибденовом катализаторе при температуре 450°С, давлении водорода 10 МПа, объемной скорости подачи сырья (по жидкому сырью) 0,9 ч-1, массовом отношении катализатор : сырье, равном 3 : 100, и глубине превращения 62,2% (масс.) были получены следующие фракции:

Фракция Содержание, % (масс.)
С5-270°С 37,7
270-340°С 20,2
340-500°С 29,1
выше 500°С 5,0
Итого 92,0

Гидрокрекинг в псевдоожиженном слое позволяет перерабатывать тяжелые газойли с установок каталитического крекинга, работающих в режиме псевдоожижения. Наличие в таком сырье тонкой катализаторной пыли не отражается на работе реакторов гидрокрекинга. На ряде установок гидрокрекинга предусмотрена предварительная деметаллизация сырья в аппаратах с псевдоожиженным слоем дешевого твердого материала.

К особенностям эксплуатации установок гидрокрекинга следует отнести склонность к осмолению и полимеризации хранящегося в резервуарах сырья и необходимость соблюдения мер безопасности в связи с возможным образованием токсичных карбонилов металлов при работе с катализаторами, содержащими никель, кобальт или молибден.

Гидрокрекинг остатка вакуумной перегонки нефти

При гидрокрекинге остатка вакуумной перегонки нефти [плотностью 979,2 кг/м3, содержание серы 2,08% (масс.), коксуемость по Конрадсону 13,0% (масс.), содержание фракций НК—524°С — 25% (об.) и >524°С —75% (об.)] было получено:

Продукты Выход, кг/сут
Сероводород 6000
Фракция С13 7000
Фракция С4-204°С 27
Фракция 204-360°С 111
Фракция 360-524°С 106
Фракция >524°С 83

В последнее время для устранения опасности каналообразования в реакторах с псевдоожиженным слоем катализатора с целью улучшения барботажа и достижения более эффективного контакта газосырьевой смеси с катализатором применяют секционирование. Для регулирования теплового режима в них используют и посекционный ввод холодного водорода.


ГИДРОГЕНИЗАЦИОННЫЕ ПРОЦЕССЫ