Котировки акций
adrbidask
Газпром0.000.00
ГМК0.000.00
Лукойл0.000.00
Роснефть0.000.00
Ростелеком0.000.00
Сургутнефтегаз0.000.00
Татнефть0.000.00
ВТБ0.000.00
Данный на 00:00 МСК
Товарные рынки
BIDASK
Золото0.000.00
Серебро0.000.00
Платина0.000.00
Палладий0.000.00
Алюминий0.000.00
Никель0.000.00
Медь0.000.00
Нефть Brent0.000.00
Нефть Лайт0.000.00

МОРСКИЕ СТАЦИОНАРНЫЕ ПЛАТФОРМЫ

Конструкция стационарных платформ Гравитационная платформа Свайная платформа Стационарные платформы на колоннах
Ледостойкие платформы

Состав стационарной платформы

seaplatform41

Конструкция стационарных платформ состоит из трех основных частей:

  • верхних строений 5;
  • опорного блока 6;
  • фундамента 7.

Верхние строения можно подразделить на опорную палубу и блок-модули бурения, добычного комплекса, системы подготовки продукции скважин, поддержания пластового давления, размещенных на палубах. Опорный блок является наиболее важной частью платформы, поэтому при проектировании ему уделяется основное внимание.

Опорный блок состоит из трубчатых опор 4 большого диаметра, соединенных многочисленными трубчатыми элементами меньшего диаметра 2, называемыми поперечными связями. Между каждой парой опорных блоков устанавливают ферменные пролетные строения 3.

Сваи опорного блока вместе с опорами, как правило, изготовляют наклонными, что обеспечивает увеличение размера блока у основания и тем самым повышает его сопротивление опрокидывающему моменту. В поперечном направлении от платформы наклоны имеют только наружные опоры. При такой конструкции обе центральные опоры параллельны, что позволяет спускать их на полозьях на транспортную баржу с последующей доставкой опорного блока от места изготовления на точку установки.

Конструктивные параметры опорного блока и фундамента разрабатывают после определения геометрии верхних строений платформы и величины нагрузок на нее. Предварительные размеры верхних строений выбирают на основе имеющегося опыта. Для определения необходимого числа и размеров свай, а также установления потребности в юбочных сваях усиления проводят анализ грунтовых условий. Для выбора окончательного варианта конструкции опорного блока и основания необходимо повторять анализ параметров платформы с учетом реакции свай на горизонтальные и вертикальные нагрузки.

Существует несколько способов модификации опорного блока с учетом изменчивости глубин и грунтовых условий. Для этого применяют сваи и опоры, через которые они проходят, большего диаметра, чем промежуточные. В случае одинаковости размеров всех опор для усиления платформы можно предусмотреть юбочные сваи, разместив их между опорами. Можно также расположить кусты юбочных свай 1 вокруг угловых опор. Из-за наклона опор расстояние между ними на уровне морского дна больше, чем в верхней части опорного блока. Использование юбочных свай позволяет также повысить устойчивость конструкции. После разработки конструкции основания проводят анализ растягивающих нагрузок и определяют максимальную их величину на сваи.

Патрубки для юбочных свай включаются в конструкцию опорного блока, начиная со второго снизу уровня горизонтальных поперечных связей. Они отстоят от боковой плоскости опорного блока, с тем чтобы сваи могли проходить через направляющие параллельно этой плоскости. В глубоководных платформах юбочные группируют вокруг угловых свай большего диаметра. Это позволяет повысить сопротивление конструкции опрокидывающему моменту, возникающему из-за действия волн и ветра.

seaplatform42

Верхние строения современных платформ обычно имеют три палубы:

  • буровую (верхнюю) 5;
  • эксплуатационную (среднюю) 4;
  • нижнюю 3.

Нижняя палуба опирается на решетку 2, состоящую из балок, ферм и рядов колонн 1. Их нижние концы соединены со сваями, которые через опоры опорного блока (см. выше) уходят в морское дно.

Опорную конструкцию палубы (поз. 4, 5) обычно изготавливают из группы параллельных ферм с крестовыми поперечными связями. Верхние и нижние пояса ферм могут быть фланцевыми или трубчатыми, а их решетки обычно состоят из трубчатых элементов. Опорная конструкция палубы поддерживает размещаемые на ней блок-модули и верхние строения. Он может выступать за пределы площади, ограниченной периферийными опорами опорного блока во всех направлениях. Таким образом, размеры опорной конструкции палубы могут колебаться в зависимости от числа опор и функциональных требований к платформе. Иногда опорную конструкцию первоначально изготавливают без поперечных связей, с тем чтобы обеспечить проемы для спуска на салазках технологического оборудования. После чего поперечные связи приваривают по месту их расположения непосредственно в промысловых условиях.

Установку блок-модулей на опорной конструкции палубы осуществляют в соответствии с составленным в ходе предварительного проектирования планом. Блок-модули изготавливают на берегу. Здесь же они проходят испытания, а затем их перевозят на судах к месту установки. Положение межустановочных трубопроводов определяют таким образом, чтобы окончательные соединения блок-модулей в морских условиях можно было осуществить с помощью бортовых соединений двух фланцев или приваривания переводника. Участки палубы, не предназначенные для размещения блок-модулей, покрывают листовым железом, а устьевое пространство на верхнем и промежуточном уровнях - съемными листами. Промежуточная палуба обычно повторяет форму и размеры буровой. Размеры нижней палубы ограничиваются несущими опорными колоннами и ее заделывают стальной решеткой. Обычно пространство между нижней и промежуточной палубами имеет высоту 3 - 3,7 м, а между средней и буровой - 5,5 - 6,1 м.

seaplatform43

Кондукторы и стояки не являются несущими элементами опорного блока платформы, тем не менее они необходимы для выполнения функциональных требований, предъявляемых к последней. В самом начале проектирования определяют число скважин, которые предстоит пробурить, например, 18, 24, 30 или более в соответствии с экономическим обоснованием проекта разработки месторождения. Скважины бурят через кондукторы, которые располагают таким образом, чтобы над ними можно было установить вышку, перемещаемую по палубе бурового портала. Кондукторы представляют собой элемент конструкции ствола скважины - вертикальные обсадные трубы диаметром примерно 0,76 - 0,91 м, которые через направляющие кольца забивают в грунт на глубину около 60 м для последующего в них бурения.

Стояки - вертикальная часть трубопроводных коммуникаций, расположенных внутри опорного блока, предназначены для подачи морской воды на палубы, подсоединения выходных и магистральных нефте- и газопроводов, идущих от одной платформы к другой или на берег, и осуществления других технологических процессов. Их диаметры могут изменяться от 0,36 м до диаметров кондукторов. Число стояков даже небольшой автономной буровой определяют в зависимости от числа скважин и технологических функций платформы (эксплуатационная, технологическая и др.).

Большая часть платформ имеет две двухуровневые причальные посадочные площадки: по одной на каждой стороне одорного блока между колоннами. Доступ к различным палубам осуществляется с помощью маршевых лестниц и лифтов, число которых должно быть достаточным для обеспечения бесперебойной работы.

Каждую опору опорного блока снабжают демпфирующим причальным устройством. Они тянутся по вертикали на значительную глубину с тем, чтобы сделать возможным причаливание судов, погрузку и разгрузку оборудования и материалов в различных погодных условиях.

На платформе необходимо иметь как минимум один стационарный кран, обычно его грузоподъемность составляет 80 т, а вынос стрелы за пределы палубы - 7 - 8 м.

Опорный блок платформы

Опорный блок представляет собой несущую пространственную свайную конструкцию на протяжении от морского дна до опорной части палубы платформы. Он поддерживает и защищает от непогоды кондукторы, насосы, стояки, буровое и технологическое оборудования, блок-модули верхнего строения и др.

В качестве первоначального диаметра свай опорного блока можно взять сваи, равные диаметру опорных колонн палубы. Следует также иметь в виду, что максимальное уменьшение проецируемой поверхности трубчатых элементов в зоне высоких волн (у поверхности воды) сводит к минимуму волновые нагрузки на конструкцию платформы и повышает ее устойчивость.

При выборе диаметра опор необходимо также учитывать, что любой трубчатый элемент в сечении не всегда идеально круглый. Свая тоже может быть не совсем круглой и даже слегка изогнутой, поэтому опора платформы должна иметь достаточно большой внутренний диаметр с тем, чтобы обеспечить прохождение внутри нее такой сваи. При проектировании трубчатых поперечных связей, опор и других элементов конструкции платформы следует также учитывать ее плавучесть и гидростатическое давление столба морской воды.

В местах соединения трубчатых опор опорного блока и поперечных связей меньшего диаметра находятся соединительные узлы. Для обеспечения достаточной прочности опоры и предотвращения ее разрушения под действием сил со стороны поперечных связей толщину ее стенок в непосредственной близости от соединительного узла делают большей, чем на отрезке между соединительными узлами. Чем меньше диаметр опоры, тем тоньше будет стенка в ее утолщенном месте у соединительного узла. При предварительном определении толщины стенки опоры на утолщенном отрезке t можно воспользоваться эмпирическим уравнением:

Formuls/F1

Увеличение наклона опор существенно влияет на параметры платформы, при этом:

  • уменьшаются осевые нагрузки на сваи;
  • в осевой нагрузке на сваю в большей степени снимаются поперечные нагрузки на наголовник сваи (у морского дна);
  • увеличивается проецируемая поверхность сваи в горизонтальной плоскости;
  • возрастают волновые нагрузки на опорный блок;
  • увеличивается масса опорного блока;
  • секции свай могут быть меньшими по длине;
  • увеличивается эффективность забивания свай.

По мере увеличения глубины моря наклон опорных свай делают круче. Выбор наиболее экономичного варианта представляет сложную задачу. Обычно для этого необходимо осуществлять предварительное проектирование на основе двух нагрузок или более, обусловливающих величину наклона, и затем сравнивать результаты. Выбор оптимального наклона обеспечивается поиском оптимального сочетания таких показателей, как несущая способность грунта, забиваемость сваи, качество стали, используемой для их изготовления и опорного блока; применение юбочных свай или отказ от них, стоимость изготовления и установки платформы.

Максимальные нагрузки на сваи определяют на основе общего анализа конструкции. Их представляют в виде максимальных реакций, возникающих в имитационных элементах основания. При известном распределении изгибающего момента по длине сваи можно определить толщину стенок ее различных секций. Их длину выбирают таким образом, чтобы соединение секций в производственных условиях осуществлялось рядом с точкой приложения максимального момента.

Опоры опорного блока соединяют между собой и неподвижно закрепляют с помощью трех видов поперечных связей: диагональных в вертикальной плоскости, горизонтальных и диагональных в горизонтальной. Плоскости последних располагают на расстоянии около 12 - 18 м друг от друга по вертикали. Небольшие промежутки (около 12 м) часто делают у поверхности воды, а с возрастанием глубины их увеличивают.

Система поперечных связей выполняет следующие функции:

  • способствует передаче поперечных нагрузок на основание платформы;
  • обеспечивает структурную целостность при строительстве и установке МСП;
  • противодействует скручивающему движению системы "опорный блок - свая" после установки;
  • поддерживает противокоррозионные аноды и кондукторы, передает создаваемые ими волновые нагрузки на основание.

Трубчатые поперечные связи представляют собой балки или колонны. В основном они подвергаются воздействию продольных нагрузок. Диаметр вышеупомянутых элементов следует выбирать таким образом, чтобы коэффициент гибкости, определяемый как отношение действительной длины L к радиусу r вращения, находился в диапазоне 60 - 90. Колебания коэффициента жесткости от 30 до 100 называют промежуточным диапазоном колонны. При L/r - 60÷90 прочность колонны зависит от тангенциального модуля материала и значения коэффициента действительной длины К, который изменяется в зависимости от условий закрепления конца колонны:

  • К = 1 - оба конца закреплены с помощью штифтов;
  • К = 0,5 - концы закреплены неподвижно;
  • К = 0,7 - один конец закреплен неподвижно, другой с помощью штифта;
  • К = 2 - один конец закреплен неподвижно, другой совершенно свободен.

Длинные колонны (L/r > 100) очень чувствительны к колебаниям нагрузок. Если же L/r находится в диапазоне 60 - 90, то критическое напряжение в колонне практически нечувствительно к изменению величины К. Часто при проектировании трубчатых поперечных связей для опорных блоков принимают К = 0,8÷85.

На практике при проектировании поперечных связей малого диаметра (до 460 мм) за исходную величину часто принимают толщину стенок стандартных труб. Если диаметр труб приближается к 760 мм, толщину стенок поперечных связей считают равной 12,7 мм. Если диаметр составляет 760 - 914 мм, в качестве исходной берут толщину стенок около 16 мм.

Если отношение диаметра трубы D к толщине стенок трубы t находится в диапазоне 15 - 20, то можно говорить о переходе от тонкостенных к толстостенным трубам. Последние редко используют в качестве поперечных связей. Когда D/t достигает 90, возникают проблемы, связанные с изгибанием труб. При больших значениях этого отношения возникает необходимость изучения проблемы, связанной с напряжениями, вызванными гидростатическим давлением воды, в которой расположена поперечная связь.

По мере увеличения длины поперечных связей опорного блока, когда отношение L/r находится приблизительно в пределах 90 - 100, применение конструкционных материалов с высоким пределом текучести становится неприемлемым.

В качестве трубчатых поперечных связей можно использовать элементы, для которых L/r находится в диапазоне от 30 до 60. Для заданной длины поперечных связей увеличение их диаметра ведет к уменьшению отношения L/r. Для увеличения прочности можно было бы рекомендовать применение трубчатых поперечных связей большего диаметра. Однако препятствием для этого является ограниченный диаметр предварительно выбираемых опор опорного блока, поскольку диаметры большинства поперечных связей составляют 70 - 80% диаметра опор. С другой стороны, волновая нагрузка на поперечную связь увеличивается с ростом ее диаметра. Следовательно, предпочтительней использовать поперечные связи небольшого диаметра (однако с большими значениями отношения L/r). Малая величина L/r означает, что при одной и той же продольной нагрузке на поперечную связь последняя должна иметь больший диаметр и меньшую толщину стенок, т.е. большее отношение D/t. Последнее увеличивает вероятности местного изгиба поперечной связи, а также возникновения проблем, связанных с гидростатическим давлением.

Юбочные сваи

Юбочные сваи либо добавляют (забивают) в промежутках между сваями, проходящими через опоры опорного блока, либо группируют вокруг опор и забивают через направляющие патрубки, расположенные вокруг угловых опор и заключенные в металлические цилиндры. Последние при этом крепят к опорам платформы.

Юбочные сваи применяют в том случае, когда необходимо повысить способность конструкции противостоять опрокидывающему моменту. Иногда их используют, если невозможно обеспечить заданную глубину погружения сваи в грунт с аномальными свойствами, и тем самым облегчают процесс забивания.

Устойчивость юбочных свай достигается за счет обетонирования пространства между сваей и внутренней поверхностью патрубка. Для обеспечения необходимой прочности связи сваи с патрубком последний должен быть достаточно длинным. Для штормовых условий с периодичностью в 100 лет эту величину можно сделать большей на 1/3. Сцепление между юбочной сваей и патрубком повышается за счет приваривания колец к внутренней поверхности патрубка и наружной поверхности секции свай, проходящей через верхушку патрубка.

Верхнее строение платформы

Верхнее строение современной глубоководной морской стационарной платформы состоит из комплекта основных блок-модулей, предназначенных для:

  • бурения двумя буровыми установками куста более 36 скважин предельной глубиной 5000 м;
  • одновременного бурения и эксплуатации куста скважин.
seaplatform44

Блок-модуль эксплуатационного комплекса состоит из модулей:

  • манифольда правого борта 1;
  • манифольда левого борта 2;
  • сепарации и насосной откачки 3;
  • замера продукции скважин 4;
  • управления 5.

Блок-модуль бурового комплекса состоит из модулей:

  • буровых насосов и циркуляционной системы 8;
  • пневмотранспорта и цементировочного комплекса 9;
  • подпортального 10;
  • подвышенного портала 11;
  • вышечного оборудования 12;
  • буровых вышек 13;
  • геофизического оборудования 14;
  • АСУ ТП бурения 15.

Блок-модуль энергетического комплекса состоит из модулей:

  • энергетического бурового комплекса 6;
  • энергетического эксплуатационного комплекса 7.

Блок-модуль жилого комплекса состоит из комплексов:

  • основного 16;
  • первого дополнительного 17;
  • второго дополнительного 18;
  • вспомогательного основного 16а;
  • первого вспомогательного дополнительного 17а;
  • второго вспомогательного дополнительного 18а.

Блок-модуль жизнеобеспечения состоит из:

  • радиосвязи и СВКП 19;
  • посадочной вертолетной площадки 20;
  • мачты 21.

Кроме того, верхнее строение, платформы включает краны КЭГ, танкерные шлюпки, мостовые краны, блок сжигания и другое вспомогательное оборудование.



Конструкция стационарных платформ Гравитационная платформа Свайная платформа Стационарные платформы на колоннах
Ледостойкие платформы

МОРСКИЕ СТАЦИОНАРНЫЕ ПЛАТФОРМЫ

Курс валют предоставлен сайтом kursvalut.com